Using the tools of physics and design principles, AMOLF researchers study complex matter, such as light at the nanoscale, living matter, designer matter and nanoscale solar cells. These insights open up opportunities to create new functional materials and to find solutions to societal challenges.
C. elegans does not accidentally switch off its ability to detect salt
AMOLF researchers, collaborating with researchers from the Erasmus MC, have discovered a genetic mechanism that ensures that a nerve cell retains its identity once it has differentiated. This concerns a neuron in the worm C. elegans that can detect salt. Its identity is activated by a genetic switch during the cell’s development. Jeroen van Zon and his colleagues have discovered how it is possible that this switch never spontaneously switches off again.
Crystals beneath a sunbed
PhD student Marloes Bistervels from the Self-Organizing Matter research group at AMOLF has managed to use light to very precisely control the formation of nanocomposites in the shape of corals and vases. By illuminating a solution of the right ingredients with UV light, she can control where, when and which structures arise at the micrometer scale.