Detailed Balance (DB) Charts

Return to Sustainable Energy materials page

Figures last updated: on November 28, 2024 by Daphne Dekker.

The figures shown below provide an up-to-date comparison between world-record solar cell efficiencies for different materials and the fundamental detailed balance efficiency limit.

These plots may be used with attribution to both this website and the following article:
Photovoltaic materials – present efficiencies and future challenges
A. Polman, M. Knight, E.G. Garnett, B. Ehrler, and W.C. Sinke, Science 352, 307 (2016). DOI: 10.1126/science.aad4424.

Efficiencies relative to the detailed balance limit

Fraction of the detailed-balance limit (black line) achieved by record-efficiency cells, gray lines showing 75% and 50% of the limit.

Optical and electrical fractions

The current ratio j = Jsc/ JDB plotted versus the product of the voltage and fill factor fractions (v x f = FF Voc / FFDB VDB) for record-efficiency cells. The lines around some data points correspond to a range of band gaps taken in the detailed balance calculations according to uncertainty in the band gap of the record cell.

Current, voltage, and FF

Current, voltage, and FF. Single-junction solar cell parameters are shown as a function of band gap energy according to the detailed balance limit (solid lines) and experimental values for record-efficiency cells.

Single-junction solar cell parameters are shown as a function of band gap energy according to the detailed balance limit (solid lines) and experimental values for record-efficiency cells. Panel 1: Short-circuit current Jsc. Panel 2: Open-circuit voltage Voc. The voltage corresponding to the band gap is shown for reference, with the voltage gap Vg–VDB indicated by the gray shaded region. Panel 3: Fill factor FF = (JmpVmp)/(VocJsc). All data are for standard AM1.5 illumination at 1000 W/m2.

Optical and electrical fractions for selected tandem solar cells

Optical and electrical fractions for selected tandem solar cells

The current ratio j = Jsc/ JDB plotted versus the product of the voltage and fill factor fractions (v x f = FF Voc / FFDB VDB) for record-efficiency cells. The labels correspond to the top//bottom subcell materials of the tandem cell.


References for record-efficiency cells in the updated figures

Crystalline silicon

  • Performance parameters (efficiency 27.4%) (updated November 2024):
    Solar cell efficiency tables (version 65)
    M. A. Green et al., Prog. Photovolt: Res. Appl.  (2024).
  • Cell fabrication:
    No information available.

Multicrystalline silicon

Amorphous silicon

Nanocrystalline silicon

GaAs 

InP

GaInP

  • Performance parameters (efficiency 22.0%) (updated October 2019):
    Solar cell efficiency tables (version 54)
    M. A. Green et al., Prog. Photovolt: Res. Appl. 27, 565-575 (2019).
  • Cell fabrication:
    NREL, private communication, 22 May 2019. (according to M. A. Green et al., Prog. Photovolt: Res. Appl. 27, 565-575 (2019))

CdTe

  • Performance parameters (efficiency 23.1%) (updated November 2024):
    Solar cell efficiency tables (version 65)
    M. A. Green et al., Prog. Photovolt: Res. Appl.  (2024).
  • Cell fabrication:
    No specifics available yet.

CIGS

CZTSSe

CZTS

Dye/TiO2

Organic

Quantum-dots

Perovskite

  • Performance parameters (efficiency 26.7%) (updated July 2024):
    Solar cell efficiency tables (version 64)
    M. A. Green et al., Prog. Photovolt: Res. Appl. 32, 425-441 (2024).
  • Cell fabrication:
    No specifics available yet.

Antimony Selenosulfide (SbSSe)

Tandem Solar Cells

Perovskite – Silicon

  • Performance parameters (efficiency 34.6%) (updated November 2024):
    Solar cell efficiency tables (version 65)
    M. A. Green et al., Prog. Photovolt: Res. Appl. (2024).
  • Cell fabrication
    No specifics available yet.

Perovskite – CIGS

Perovskite – Perovskite

GaAsP – Si

GaInP – GaAs

Perovskite – Organic

Organic – Organic