Photonics in Flatland: challenges and opportunities for nanophotonics with 2D semiconductors

Back to all publications

Publication date
DOI http://dx.doi.org/10.1038/s44310-025-00092-3
Reference A. Azimi, J. Barrier, A.I. Barreda, T.A. Bauer, F. Bouzari, A. Brokkelkamp, F. Buatier de Mongeot, T. Parsons, P.C.M. Christianen, S. Conesa-Boj, A.G. Curto, S. Das, B. Dias, I. Epstein, Z. Fedorova, F.J. García de Abajo, I. Goykhman, L. Greten, J. Grönqvist, L. Guarneri, Y. Guo, T. Hoekstra, X. Hu, B. Laudert, J. Lynch, S. Meyer, B. Munkhbat, D. Neshev, M. Ogienko, S. Papadopoulos, A. Parappurath, J. Sangers, P. Soubelet, C. Soukaras, G. Soavi, I. Staude, Z. Sun, K.J. Tielrooij, M.D.G. Uddin, A. Ustinov, J. van de Groep, J. van Wezel, N. Vermeulen, H. Wang, Y. Wang, S. Xiao, B. You and X. Zambrana-Puyalto, Photonics in Flatland: challenges and opportunities for nanophotonics with 2D semiconductors, npj Nanophoton. 2, (1), 44: 1-20 (2025)
Group Resonant Nanophotonics

Two-dimensional (2D) semiconductors are emerging as a versatile platform for nanophotonics, offering unprecedented tunability in optical properties through exciton resonance engineering, van der Waals heterostructuring, and external field control. These materials enable active optical modulation, single-photon emission, quantum photonics, and valleytronic functionalities, paving the way for next-generation optoelectronic and quantum photonic devices. However, key challenges remain in achieving large-area integration, maintaining excitonic coherence, and optimizing amplitude-phase modulation for efficient light manipulation. Advances in fabrication, strain engineering, and computational modeling will be crucial to overcoming these limitations. This Perspective highlights recent progress in 2D semiconductor-based nanophotonics, emphasizing opportunities for scalable integration into photonics.