Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performance

Back to all publications

Publication date
DOI http://dx.doi.org/10.1021/acsnano.4c03222
Reference R.A. Saha, W.-H. Chiu, G. Degutis, P. Chen, M. Filez, E. Solano, N. Orlov, F. De Angelis, R. Ariza, C. Meneghini, C. Detavernier, S.S. Mali, M.T. Hoang, Y. Yang, E.C. Garnett, L. Wang, H. Wang, M.B.J. Roeffaers and J.A. Steele, Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performance, ACS Nano 18, (26), 16994-17006 (2024)
Group Nanoscale Solar Cells

The desire to commercialize perovskite solar cells continues to mount, motivating the development of scalable production. Evaluations of the impact of open-air processing have revealed a variety of physical changes in the fabricated devices─with few changes having the capacity to be functionalized. Here, we highlight the beneficial role of ambient oxygen during the open-air thermal processing of metastable γ-CsPbI3-based perovskite thin films and devices. Physiochemical-sensitive probes elucidate oxygen intercalation and the formation of Pb-O bonds in the CsPbI3 crystal, entering via iodine vacancies at the surface, creating superoxide (O2-) through electron transfer reactions with molecular oxygen, which drives the formation of a zero-dimensional Cs4PbI6 capping layer during annealing (>330 °C). The chemical conversion permanently alters the film structure, helping to shield the subsurface perovskite from moisture and introduces lattice anchoring sites, stabilizing otherwise unstable γ-CsPbI3 films. This functional modification is demonstrated in γ-CsPbI2Br perovskite solar cells, boosting the operational stability and photoconversion efficiency of champion devices from 12.7 to 15.4% when annealed in dry air. Such findings prompt a reconsideration of glovebox-based perovskite solar cell research and establish a scenario where device fabrication can in fact greatly benefit from ambient oxygen.