Optomechanically Induced Birefringence and Optomechanically Induced Faraday Effect

Back to all publications

Publication date
DOI http://dx.doi.org/10.1103/PhysRevLett.123.023602
Reference R. Duggan, J. Pino, E. Verhagen and A. Alù, Optomechanically Induced Birefringence and Optomechanically Induced Faraday Effect, Phys.Rev.Lett. 123, 023602: 1-7 (2019)
Group Photonic Forces

We demonstrate an optomechanical platform where optical mode conversion mediated by mechanical motion enables arbitrary tailoring of polarization states of propagating light fields. Optomechanical interactions are realized in a Fabry-Perót resonator, which naturally supports two polarization-degenerate states while an optical control field induces rotational symmetry breaking. Applying such principles, the entire Poincaré sphere is spanned by just optical control of the driving field, realizing reciprocal and non-reciprocal optomechanically-induced birefringence for linearly polarized and circularly polarized control driving. A straightforward extension of this setup also enables all-optical tunable isolation and circulation. Our findings open new avenues to exploit optomechanics for arbitrary manipulation of light polarization.