Communication: Slow proton-charge diffusion in nanoconfined water
We investigate proton-charge mobility in nanoscopic water droplets with tuneable size. We find that the diffusion of confined proton charges causes a dielectric relaxation process with a maximumloss frequency determined by the diffusion constant. In volumes less than similar to 5 nm in diameter, proton-charge diffusion slows down significantly with decreasing size: for diameters < 1 nm, the diffusion constant is about 100 times smaller than in bulk water. The low mobility probably results from the more rigid hydrogen-bond network of nanoconfined water, since proton-charge mobility in water relies on collective hydrogen-bond rearrangements.