Probing Plasmon-NV0 Coupling at the Nanometer Scale with Photons and Fast Electrons

Back to all publications

Publication date
DOI http://dx.doi.org/10.1021/acsphotonics.7b01093
Reference H. Lourenco-Martins, M. Kociak, S. Meuret, F. Treussart, Y.H. Lee, X.Y. Ling, H.-C. Chang and L.H.G. Tizei, Probing Plasmon-NV0 Coupling at the Nanometer Scale with Photons and Fast Electrons, ACS Photonics 5, (2), 324-328 (2018)
Group Photonic Materials

The local density of optical states governs an emitters’ lifetime and quantum yield through the Purcell effect. It can be modified by a surface plasmon electromagnetic field, but such a field has a spatial extension limited to a few hundreds of nanometers, complicating the use of optical methods to spatially probe emitter-plasmon coupling. Here we show that a combination of electron-based imaging, spectroscopies, and photon-based correlation spectroscopy enables measurement of the Purcell effect with nanometer and nanosecond spatiotemporal resolutions. Due to the large variability of radiative lifetimes of emitters in nanoparticles we relied on a statistical approach to probe the coupling between nitrogen-vacancy centers in nanodiamonds and surface plasmons in silver nanocubes. We quantified the Purcell effect by measuring the nitrogen-vacancy excited state lifetimes in a large number of either isolated nanodiamonds or nanodiamond-nanocube dimers and demonstrated a significant lifetime reduction for dimers.