Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries

Back to all publications

Publication date
DOI http://dx.doi.org/10.1364/oe.16.019001
Reference J.A. Dionne, E. Verhagen, A. Polman and H.A. Atwater, Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries, Opt. Express 16, (23), 19001-19017 (2008)
Group Photonic Materials

We present a theoretical analysis of planar plasmonic waveguides that support propagation of positive and negative index modes. Particular attention is given to the modes sustained by metal-insulator-metal (MIM), insulator-metal-insulator (IMI), and insulator-insulator-metal (IIM) geometries at visible and near-infrared frequencies. We find that all three plasmonic structures are characterized by negative indices over a finite range of visible frequencies, with figures of merit approaching 20. Moreover, using finite-difference time-domain simulations, we demonstrate that visible-wavelength light propagating from free space into these waveguides can exhibit negative refraction. Refractive index and figure-of-merit calculations are presented for Ag/GaP and Ag/Si3N4-based structures with waveguide core dimensions ranging from 5 to 50 nm and excitation wavelengths ranging from 350 nm to 850 nm. Our results provide the design criteria for realization of broadband, visible-frequency negative index materials and transformation-based optical elements for two-dimensional guided waves. These geometries can serve as basic elements of three-dimensional negative-index metamaterials.