Back to all events
Event

Pushing the limits on speed of optical interrogation of large-­scale neuronal circuits

Date 4 April 2016 Time 11:00 - 12:00
Location AMOLF Lecture Room
Category Public Colloquium

Alipasha Vaziri (The Rockefeller University)

Knowledge  on  structural  connectivity  in  neuronal  circuits  is  necessary  for  understanding  information representation and processing in local circuits. However, as some examples of well-­?characterized  neuronal  architectures  illustrate,  structural  connectivity  alone  it  is  not  sufficient  to  predict  how  input  stimuli  are  mapped  onto  activity  patterns  of  neuronal populations and how the collective dynamics of all neurons in the network leads to behavior. Addressing this challenge has been hampered by lack of appropriate tools and methods that allow parallel and spatiotemporally specific application of excitation patterns onto neuronal populations while capturing the dynamic activity of the entire network at high spatial and temporal resolution. The combination of new optical excitation techniques, optogenetics and high speed functional imaging are providing new opportunities to address this question and move towards a dynamic map of neuronal circuits.

Most  structural  and  functional  imaging  modalities,  including  two-­?photon  imaging,  rely  on  the  manipulations  of  light  fields  in  the  spatial  domain.  However,  pulsed  excitation  sources such as femtosecond lasers also possess a spectral width that provide an additional degree of  freedom  that  can  be  used  to  “sculpt”  other  spatial  light  distributions.  This  has  been  exemplified  in  the  technique  of  temporal  of  focusing  through  which  sheet-­?like  light distributions  with  an  axial  confinement  close  that  of  point  scanning  have  been  demonstrated.  Using  this  approach  we  developed  a  two-­?photon  technique  for  brain-­?wide calcium  imaging  which  has  allowed  us  to  capture  the  activity  of  individual  neurons  within  the  densely  packed  head  ganglia  of  C.  elegans  [1].  We  demonstrate  near-­?simultaneous recording of activity of up to 70% of all head neurons. The application of this technique to other model organisms including rodents and zebrafish larvae is being currently pursued.  In order to functionally image even larger brains and ultimately apply volumetric brain imaging in freely behaving animals we have recently established light-­?field microscopy in combination with 3D deconvolution [2]. Thereby, we demonstrate intrinsically simultaneous volumetric Ca-­?imaging in the entire brain of larval zebrafish during sensory stimulation. We are able to track the activity of 5000 neurons distributed throughout the brain at 20Hz volume rate. The simplicity of this technique and the possibility of the integration into conventional microscopes make it an attractive tool for high-­?speed volumetric Ca-­?imaging. These tools combined with high speed optogentic control of neuronal circuits [3, 4], advanced statistics tools and mathematical modeling and will be crucial to move from an anatomical wiring map towards a dynamic map of neuronal circuits.