AMOLF International Nanophotonics Summer School

Amsterdam, 18th June 2019

Fundamental Limits in "nano" photovoltaics

Jenny Nelson

Department of Physics and Grantham Institute for Climate Change Imperial College London

> Thanks to: Ned Ekins-Daukes, UNSW Thomas Kirchartz, FZ Juelich

Imperial College London

Solar energy conversion

Solar thermal

Solar chemical

Solar photovoltaic

Photons in, electrons out

- Photovoltaic energy conversion requires:
 - photon absorption across an energy gap
 - separation of photogenerated charges
 - asymmetric contacts to an external circuit

Photons in, electrons out

Blackfriars Bridge $\sim 1.1 \text{ MW}_{p}$

Solar powered refrigeration $\sim 100 \text{ W}_{p}$

 $\sim 1 \text{ mW}_{p}$

efficiency ~ 15-20%

power rating $\sim 100-200 \text{ W}_p$

Electrical work and efficiency

200

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 0

Photon energy / eV

Efficiency from the Current density – Voltage (J-V) curve

- J(V) measured under Standard Test Conditions (AM1.5, 1000 Wm⁻², 25°C)
- Approximately:

$$J = -J_{sc} + J_0 \left(\exp \frac{qV}{nkT} - 1 \right)$$

Power conversion efficiency:

$$\eta = \frac{J_{sc}V_{oc}FF}{P_{in}}$$
$$FF = \frac{J_{mpp}V_{mpp}}{J_{sc}V_{oc}}$$

$$P_{in} = \int \phi_{sun}(E) E \, \mathrm{d}E$$

- Short circuit current density J_{sc},
- Open circuit voltage V_{oc}
- Fill factor FF

Future directions in solar photovoltaics

0.5

0.25

X

800

0.66 eV

1400 1600 1800 Wavelength/nm

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Nanostructures in photovoltaics
- Routes to more work per photon
- Nanomaterials to approach the efficiency limit
- Nanomaterials to reduce costs

Detailed balance limit

(i) One electron hole pair per photon with $hv > E_g$,

(ii) Carriers relax to form separate Fermi distributions at lattice temperature $T_{ambient}$ with quasi Fermi levels separated by $\Delta\mu$.

(iii) All electrons extracted with same electrochemical potential $\Delta \mu = eV$

(iv) Only loss process is spontaneous emission

Solar cell absorbs visible light, emits IR light

Conventional solar cell

Calculation of limiting efficiency

Emission of sun and solar cell at open circuit

Graph: courtesy Thomas Kirchartz

Practical and limiting efficiencies

In the ideal (detailed balance) case:

Energy is lost through transmission, relaxation and radiative recombination

Limiting efficiency depends only on the band gap (and the concentration factor of the light)

Practical and limiting efficiencies

Practical and limiting efficiencies

Spire Corp, IEEE Tr. Electron Dev. 37, 469 (1990)

In the ideal (detailed balance) case: Energy is lost through radiative recombination.

Part of the loss is due to the difference in angular range of absorbed and emitted light. Restricting the angular range of emission brings efficiency closer to the maximal concentration limit

Optical confinement in a thin-film structure

Efficiency: 28.8 %

Alta Devices, Prog. Photovoltaics 20, 606 (2012)

How bad are the assumptions?

(i) One electron hole pair per photon with $h_V > E_g$,

Overestimate current by 10-20%

(ii) Carriers relax to form separate Fermi distributions at lattice temperature $T_{ambient}$ with quasi Fermi levels separated by $\Delta\mu$.

~ OK

(iii) All electrons extracted with same electrochemical potential $\Delta \mu = qV$ Overestimate eV_{oc} by O(0.1 eV)

(iv) Only loss process is spontaneous emission

Overestimate qV_{oc} by several 0.1 eV Overestimate fill factor

Assumptions in the Shockley Queisser limit

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Nanostructures in photovoltaics
- Routes to more work per photon
- Nanomaterials to approach the efficiency limit
- Nanomaterials to reduce costs

Nanostructures in Photovoltaics

First International conference on "Nanostructures in Photovoltaics" Max Planck institute for Complex Systems Dresden, 2001

Photovoltaic "nano"-materials

quantum well

Properties of nanomaterials for use in photovoltaics

- Control of the electronic density of states
- Control of the phonon density of states
- Anisotropy in electronic and optical properties
- Access new spectral ranges
- Manipulate the optical response

How can nanomaterials help PV efficiency?

- Surpass the SQ efficiency limit (?)
- **Approach** the SQ efficiency limit with imperfect materials
- **Reduce the cost** of reaching a given efficiency

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Nanostructures in photovoltaics
- Routes to more work per photon
- Nanomaterials to approach the efficiency limit
- Nanomaterials to reduce costs

Routes to more work per photon

Route 1. Higher efficiency via multiple band gaps

Multi-junction structures or spectral splitting

III-V Multi-Junction Solar Cells

Limiting efficiency around 46% for a monolithic four-junction cell under concentration

This works, but multijunction III-V structures are expensive to grow

Using nanostructures to achieve multiple band gaps

 Quantum well structures could be used to achieve target band gaps for monolithic multi-junctions on selected substrates

 Strained layer quantum well solar cell: effectively a single junction device

Route 2. Reshaping the spectrum by up and down-conversion

Singlet fission as a downconversion strategy

- Singlet fission: high energy singlet excitons converted efficiently into triplet pairs in some molecular materials
 - Separate triplets into e h pairs OR
 - Convert into IR luminescence by energy transfer to nanoparticles
- Goal of an optical coating on silicon

Reducing the photon entropy loss

- Approach the 'ultimate' efficiency by restricting the angular range of emission to match the range of absorption.
- May be possible by engineering the optical modes of semiconductor nanowires

Haverkort et al., Appl. Phys. Rev. 5, 031106 (2018)

Route 3: More work per photon by slowed cooling

Reduced thermalisation in solar cells

- Eliminating thermalisation of charge carriers with environment could increase efficiency to 85% but not physically achievable
- Approaches that have been studied:
 - Multiple exciton generation
 - Slow cooling via "phonon bottleneck"

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Nanostructures in photovoltaics
- Routes to more work per photon
- Nanomaterials to approach the efficiency limit
- Nanomaterials to reduce costs

Nanostructures to improve charge collection

- Radial nanowire solar cells can outperform planar junctions only when diffusion length << absorption depth
- Helps to approach limiting efficiency in poor quality semiconductors

• Comparable to the use of 'bulk heterojunctions' in molecular photovoltaics

B.Kayes et al. Journal of Applied Physics (2005) vol. 97 (11) pp. 114302

Nanostructures to reduce light reflection

 Array of low geometrical cross section nanowires results in low refractive index and weak refection

• Exploit forward Mie scattering into high index substrate to reduce reflection

Spinelli et al., Nat. Comm. 2012

Nanostructures to improve the radiative efficiency

- Nanowires can show optical cross section > 10x geometrical
- If recombination is proportional to bulk volume can enhance generation relative to non-radiative recombination

Use of Plasmonics in Photovoltaics

Internal Scattering

Field Enhancement

Surface Plasmon Polariton Propagation

Use of Plasmonics in Photovoltaics

• Design of nanostructures for plasmonic enhancement depends strongly on accurate knowledge of the dielectric function of the metal used!

See poster by Phoebe Pearce at this meeting

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Nanostructures in photovoltaics
- Routes to more work per photon
- Nanomaterials to approach the efficiency limit
- Nanomaterials to reduce costs

Printable photovoltaics

Summary

- Photovoltaic energy conversion efficiency is limited to 33% in unconcentrated sunlight
- To approach this efficiency need to maximise radiative efficiency; to surpass it we need to reduce losses to light transmission and charge carrier thermalisation
- Nanostructures have capability to modify the electronic and optical density of states
- Several approaches proposed to achieving more work per photon
 - Upconversion, downconversion, multiple gaps, slowed cooling
 - Only multi-junctions are currently practically useful
- Most effective uses of nanostructures to raise efficiency are in manipulating light a pointion and emission to approach the theoretical limit of the theoretic