Introduction to Topological Photonics Mikael C. Rechtsman, Penn State

AMOLF Nanophotonics Summer School, June 2019

The group

Jiho Noh

Jonathan Guglielmon

Sachin Vaidya

Kokkimidis Patatoukos

Dr. Alex Cerjan

Dr. Wladimir Benalcazar

Dr. Sebabrata Mukherjee

Kanchita Klangboonkrong

Charles E. Kaufman Foundation

Part 1: Introduction to Photonic Topological Insulators [collaboration with group of M. Segev and A. Szameit]

Nobel prize for physics: 2016

Photo: A. Mahmoud David J. Thouless Prize share: 1/2 Photo: A. Mahmoud F. Duncan M. Haldane Prize share: 1/4 Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

"For theoretical discoveries of topological phase transitions and topological phases of matter."

Topological physics

A system described by a topological number must be robust

Quantum Hall effect

VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

Motivation: bring topological robustness into photonics

Dr. Gary Patton, IBM: "Innovations for Next Generation Scaling" Industry Strategy Symposium, Napa, CA, Jan 15, 2013

What are topological insulators?

- Topological insulators are insulators in the bulk but metallic on the edges.
- Most importantly: the edge states are scatter-free!

M. Soljacic's microwave experiment: 2009

Wang et. al., PRL (2008)

Magnetism in photonics

			Electrody Continuou	Electrodynamics of Electrodynamics of Description Endau and Lifshitz Course of Theoretical Physics Volume 8	
6	R		Landau and Lifshitz C Volume 8		
		1001	L.D. Landau, E.M. Liferi Indone of Physics Produces, 1494 Bandard by J.S. Sylver, 14, 19		
	Th How ca time-1	e big question in we strongly reversal symme	: break etry		
Thus there is		in optics?		cal frequencies	
onward, and in		•		hish between B	
and H in this from	utilet lullet theu			_ame is true for	

Magnetic response is inherently weak at optical frequencies

(1) Hafezi, Demler, Lukin, Taylor, Nature Phys. (2011): CROWS [+ Nature Photon. (2013)]

(2) Umucalilar and Carusotto, PRA (2011): using spin as polarization in PCs

(3) Fang, Yu, Fan, Nature Photon. (2012): electrical modulation of refractive index in PCs

(4) Khanikev et. al. Nature Mat. (2012): birefringent metamaterials [+ Nature Mater. (2016)]

Experimental system: photonic lattices

Peleg et. al., PRL (2007)

Envelope approximation for electric field: $\mathbf{E}(x, y, z) = \hat{x}\psi(x, y, z)e^{i(k_0 z - \omega t)}$ $|\partial_z^2 \psi| \ll 2k |\partial_z \psi|$

Paraxial Schrödinger equation:

$$i\partial_z \psi = -\frac{1}{2k}\nabla^2 \psi - \frac{k}{n_0}\Delta n(x, y, \mathbf{z})\psi$$

Derivation of paraxial approximation

Maxwell
$$\nabla \times \nabla \times \mathbf{E} = \varepsilon(x, y, z) \left(\frac{\omega}{c}\right)^2 \mathbf{E}$$

id.
$$\nabla \times \nabla \times \mathbf{E} = -\nabla^2 \mathbf{E} + \nabla (\nabla \cdot \mathbf{E})$$

Maxwell
$$\nabla \cdot (\varepsilon \mathbf{E}) = \nabla \varepsilon \cdot \mathbf{E} + \varepsilon \nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{E} = -\frac{\nabla \varepsilon \cdot \mathbf{E}}{\varepsilon} = -\nabla \ln \varepsilon \cdot \mathbf{E}$$

$$-\nabla^{2}\mathbf{E} - \nabla\left(\nabla\ln\varepsilon\cdot\mathbf{E}\right) = \varepsilon(x, y, z)\left(\frac{\omega}{c}\right)^{2}\mathbf{E}$$

Derivation of paraxial approximation

$$-\nabla^2 \mathbf{E} = \varepsilon(x, y, z) \left(\frac{\omega}{c}\right)^2 \mathbf{E}$$

envelope approx: $\mathbf{E} = \psi(x, y, z) e^{ik_0 z} \hat{x}$ (with $k_0 = \sqrt{\epsilon_1 \omega/c}$)

$$\underbrace{\underbrace{-(\partial_x^2 + \partial_y^2)\psi}_{\nabla_{\perp}^2\psi} - \underbrace{\partial_z^2\psi}_{\to 0} - 2ik_0\partial_z\psi}_{0} + \underbrace{\underbrace{k_0^2\psi}_{0} = \varepsilon_1 \left(\frac{\omega}{c}\right)^2\psi}_{0} + \Delta\varepsilon(x, y, z) \left(\frac{\omega}{c}\right)^2}_{0}$$
$$i\partial_z\psi = -\frac{1}{2k_0}\nabla_{\perp}^2\psi - \frac{k_0}{2}\Delta\varepsilon(x, y, z)$$
$$i\partial_z\psi = -\frac{1}{2k_0}\nabla_{\perp}^2\psi - \frac{k_0}{n_0}\Delta n(x, y, z)$$

Helical rotation induces a gauge field

y

$$i\partial_z \psi = \frac{1}{2k_0} \left(i\nabla + \mathbf{A}(z) \right)^2 \psi - \frac{k_0 \Delta n(x,y)}{n_0} \psi - \frac{k_0 R^2 \Omega^2}{2} \psi$$

$$A(z) = k_0 R \Omega(\sin \Omega z, \cos \Omega z)$$

$$Y' = y + R \sin \Omega z$$

$$z' = z$$

$$\mathcal{H}(z) = \sum_{m, \langle n \rangle} e^{i\mathbf{A}(z) \cdot \mathbf{r}_{mn}} \psi_n^{\dagger} \psi_m$$

- Floquet TIs: Kitagawa et al., PRB (2010); Lindner et al., Nature Phys. (2011).

Gauge field through helicity

$$\begin{aligned} x' &= x + R \cos \Omega z \\ y' &= y + R \sin \Omega z \\ z' &= z \end{aligned}$$

 $\partial_z = \partial'_z - R\Omega \sin(\Omega z) \partial'_x + R\Omega \cos(\Omega z) \partial'_y$

Complete the square

$$i\partial_z'\psi = \frac{1}{2k_0} \left(i\partial_\perp' - k_0 R\Omega(-\sin\Omega z, \cos\Omega z)\right)^2 \psi - \frac{k_0 R^2 \Omega^2}{2} \psi$$

 $\mathbf{A} = k_0 R \Omega \left(-\sin \Omega z, \cos \Omega z \right)$

Experimental system: photonic lattices

Our system: topological protection against transverse backscattering

Graphene opens a Floquet gap for helical waveguides

Graphene opens a Floquet gap for helical waveguides

"Time"-domain continuous simulations

Y. Chong, "Photonic Insulators with a Twist" Nature News and Views, 496, 173-174 (2013)

Experimental results: rectangular arrays

Microscope image

MCR et al., Nature 496, 196-200 (2013)

Experimental results: group velocity vs. helix radius, R

Experimental results: triangular arrays with defects

Observation of a topological transition

Guglielmon et al., Phys. Rev. A 97, 031801 (2018)

Interactions/nonlinearity: topological solitons

$$i\partial_z \psi = H_T \psi - |\psi|^2 \psi$$

Superfluid like...

Topological Quasicrystals

What are quasicrystals?

Why study (photonic) quasicrystals?

- Fundamentally interesting: between disorder and periodicity; no k, no Bloch's theorem, rethink the nature of wave physics.
 Chan et al., *Phys. Rev. Lett.* 80, 956-959 (1998); Tanese et al., PRL 112, 146404 (2014).
- Isotropic "Brillouin zone" means larger 2d gaps for low $\varepsilon_2/\varepsilon_1$. Rechtsman et al., *Phys. Rev. Lett.* **101**, 073902 (2008).
- Open question: do 3d photonic QCs have band gaps?
 Man et al., *Nature* 436, 993-996 (2005).
- Novel nonlinear behavior.
 Freedman, B. *et al. Nature* 440, 1166-1169 (2006).
- Surprising effects, e.g., disorder-enhanced transport. Levi et al., Science 332, 1541 –1544 (2011).

Quasicrystal bulk states

Fractal states

 $\psi \sim \frac{1}{r^n}$

... strange transport properties

What happens in a Floquet'ed quasicrystal?

Topological gaps!

This is a quantum anomalous Hall effect (Haldane model) for quasicrystals!

new class of quasicrystalline states

Phys. Rev. X 6, 011016 (2016)

Topological edge states!

M. Bandres, MCR, M. Segev, PRX (2016)

Topological edge states!

Topological regions are fractal-like

Conjecture: within any band, there are an infinite number of topological gaps

Topological slow light via BZ winding

J. Guglielmon and M. C. Rechtsman, Phys. Rev. Lett. 122, 153904 (2019).

Idea: topological slow light

M. Notomi et al. (2001); T. Baba (2008)

Obvious ideas

Note that both methods sacrifice bandwidth

Increase winding

J. Guglielmon and M. C. Rechtsman. Phys. Rev. Lett. 122, 153904 (2019).

How do we do it?

Engineering the edge...

J. Guglielmon and M. C. Rechtsman. Phys. Rev. Lett. 122, 153904 (2019).

Where do the new edge states come from?

$$H_{\lambda}(k_x) = (1 - \lambda)H_0(k_x) + \lambda H_1(k_x)$$

... this defines an invariant

Confinement of slow light edge modes

As winding increases, the edge modes utilizes more bulk sites

"Unused real estate" of a 2D PTI utilized to enable wideband operation

Robust slow light

These slow chiral edge states resist the severe backscattering associated with a reduced group velocity:

