

Metasurfaces and Mie-resonant nanophotonics

Isabelle Staude

Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743 Jena, Germany

...a Team Effort

@ Friedrich Schiller University Jena:
Dr Falk Eilenberger
Dr Frank Setzpfandt
Prof. Andrey Turchanin
Prof Thomas Pertsch

@Australian National University:Prof Dr Dragomir Neshev
Prof Yuri Kivshar

@ Sandia National Laboratories: Dr Igal Brener

@ Lomonosov Moscow State UniversityDr Maxim R. ShcherbakovProf Andrey A. Fedyanin

@ Karlsruhe Institute of Technology:Prof Carsten Rockstuhl

@ Norfolk State University:

bbe Center JENA

2

Prof Mikhail Noginov Prof Natalia Noginova

@JCM Wave Dr Sven Burger

@ National Academy of Sciences of Belarus Dr Alexander Muravsky

@AMOLF

Prof Femius Koenderink Dr Radoslav Kolkowski

My Current Institution

Abbe Center JENA of Photonics **Priedrich-Schiller-Universität**

3

Jena, Thuringia

Ernst Abbe (1840 - 1905)

(1851-1935)

Carl Zeiss (1816 - 1888)

Amsterdam, 21.06.2019

Outline

Abbe Center JENA of Photonics

- Motivation
- Optical properties of high-index dielectric nanoparticles
- Dielectric Huygens' metasurfaces
- Highlight talk
 - Active control of dielectric metasurfaces
 - Light emission from dielectric metasurfaces

Outline

Abbe Center JENA of Photonics

- Motivation
- Optical properties of high-index dielectric nanoparticles
- Dielectric Huygens' metasurfaces
- Highlight talk
 - Active control of dielectric metasurfaces
 - Light emission from dielectric metasurfaces

strong resonant response

magnetic response@ optical frequencies

sub-wavelength field confinement

Key Concepts in Nanophotonics

Abbe Center JENA of Photonics

Optical Metamaterials

7

Optical Nanoantennas

Graded Optical Metasurfaces

Abbe Center JENA of Photonics Friedrich-Schiller-Universität

8

 Metasurfaces for wavefront manipulation enabled by designed subwavelength building blocks imposing a position dependent phase shift onto an incident light field

• Limited polarization conversion efficiencies

F. Aieta et al., Nano Lett. **12**, 4932 (2012).

Outline

- Motivation
- Optical properties of high-index dielectric nanoparticles
- Dielectric Huygens' metasurfaces
- Highlight talk
 - Active control of dielectric metasurfaces
 - Light emission from dielectric metasurfaces

A. Kutznetsov et al., Sci. Rep. 2, 492 (2012).

Gustav Mie, Ann. Phys. 25, 377-445 (1908).

Mie-Theorie in a Nutshell

The scattered field of a single isolated dielectric sphere with radius a, size parameter $x = k_0 a$ and relative refractive index $n = n_p/n_m$ can be decomposed into a multipole series with the 2^m-pole term of the scattered electric field proportional to:

$$a_m = \frac{n\Psi_m(nx)\Psi'_m(x) - \Psi_m(x)\Psi'_m(nx)}{n\Psi_m(nx)\Xi'_m(x) - \Xi_m(x)\Psi'_m(nx)}$$

And of the scattered magnetic field proportional to:

$$b_m = \frac{\Psi_m(nx)\Psi'_m(x) - n\Psi_m(x)\Psi'_m(nx)}{\Psi_m(nx)\Xi'_m(x) - n\Xi_m(x)\Psi'_m(nx)}$$

$$\Psi_m(\rho)$$
, $\Xi_m(\rho)$: Riccati-Bessel functions

Bohren & Hoffmann: Absorption & scattering of light by small particles Isabelle Staude Metasurfaces and Mie-resonant nanophotonics

JENA

14

Mode Profiles

15

Gustav Mie, Ann. Phys. 25, 377-445 (1908).

Electric field lines (transverse components) shown on the surface of an imaginary sphere concentric with but at a distance from the particle

Near-Field Profiles

Abbe Center JENA of Photonics

First four Mie-modes excited by an *x*-polarized plane wave

Extinction Cross Section

- Connect to an observable quantity, the extinction cross section σ_{ext}
- For non-absorbing nanoparticles:

$$\sigma_{ext} = \sigma_{\rm S} = \frac{2\pi}{k^2} \sum_{m=1}^{\infty} (2m+1)(|a_m|^2 + |b_m|^2)$$

Bohren & Hoffmann: Absorption & scattering of light by small particles Isabelle Staude Metasurfaces and Mie-resonant nanophotonics Abbe Center JENA

17

Influence of the Nanoparticle Size

Abbe Center JENA of Photonics

A. Kutznetsov et al., Sci. Rep. 2, 492 (2012).

Small particle – high-refractiveindex limit, in air: Lowest order resonance of a particle at $\lambda = 2na$

Corresponds to magnetic dipole term b_1

Scaling law: Scattering response will not change as $\frac{\lambda}{na}$ is kept constant \rightarrow useful insight for performing experiments at different frequency ranges

A Few Words on Technology

Abbe Center JENA of Photonics

Spherical nanoparticles:

- Laser printing
- Trisilane decomposition

Other shapes:

- Lithographic approaches
 - electron-beam lithography
 - UV lithography
 - interference lithography
 - nanosphere lithography
- Focused ion beam milling
- Electron-beam deposition
- Dewetting schemes

ACS Phot. 2 913 (2015) Nat. Commun. 4, 1904 (2013).

Typically with reactive ion etching, but low-cost wet etch & atomic layer deposition were also demonstrated

Standard 2D Silicon Nanofabrication

Abbe Center JENA of Photonics

20

Influence of the Nanoparticle Shape

- Mie theory formulated for spheres.
- Similar resonances ("Mie-type") are also found in particles having other shapes (cubes, cylinders...)
- Calculation using numerical techniques (FDTD, FEM,...)
- Opportunity to tailor the resonances by geometry Example: resonance positions of the electric and magnetic dipole mode of individual silicon nanocylinders (h = 220 nm, $n_p = 3.5$, $n_m = 1.5$)

JENA

21

hhe Center

Refractive Index Dependence

Abbe Center JENA of Photonics

22

Numerically calculated scattering cross section (in units of m²) of an individual nanodisk (height h = 220 nm, diameter d = 220 nm, incident wave vector oriented along the rotational symmetry axis of the nanodisk) in $n_m = 1.5$ material

Suitable Materials

Abbe Center JENA of Photonics

Optical Properties of Silicon

Abbe Center JENA of Photonics Friedrich-Schiller-Universität

c-Silicon: Green & Keevers, Progress in photovoltaics 3, 189-192 (1995). Silver: Johnson & Christy, Phys. Rev. B 6, 4370-4379 (1972).

Efficiency at Resonance

Comparison with Nanoplasmonics

Nanoplasmonics

Depolarisation field

Free electrons in the conduction band

- Strong resonant response
- Strong field confinement
- Subwavelength dimensions
- Absorption losses
- Magnetic response
 - \rightarrow complex geometries

All-dielectric nanophotonics

- Strong resonant response
- Strong field enhancement
- Negligible absorption losses
- Electric and magnetic multipolar resonances
- Diffraction limit unbroken

Recent Development

Google Scholar search, "dielectric nanoantenna" || "dielectric metamaterial" || "dielectric metasurface" -"metal-dielectric metamaterial"

year

Abbe Center JENA

27

Historical Interlude

- Mie's paper: 1908
- Gans & Happel, Annalen der Physik, 1909, same equation as in Lewin!
- Schaefer & Stallwitz Annalen der Physik, 1916, 2D (rods)
- Lewin 1946
- Sakurai 1949, "Artificial Matter for electromagnetic wave".
- Bell Labs, etc. (artificial dielectrics): 40's-60's
- Early 2000's, late 90's: Kuester & Holloway (RF), Hasman (near IR), Chang-Hasnain, Lalanne, ...
- Last ~10 years:
 - Visible&Near IR: Kuznetsov, Luk'yanchuk, Evlyukhin, Polman, Kivshar, Brener, Brongersma, Valentine, etc, etc.
 - IR: Brongersma, Sandia, ...
 - RF: Cummer, Gopinath, Lippens, Kuester&Holloway, etc.

Slide by Igal Brener, <u>ibrener@sandia.gov</u> Many thanks to Ed Kuester, CU Boulder For a more comprehensive reference list, see Kuester& Holloway, Antennas and Propagation, IEEE Transactions on 51, no. 10 (2003): 2596, PIER B, vol. 33, p. 175 (2011).

bbe Center JENA

28

More Complex Nanoparticle Shapes

Abbe Center JENA of Photonics

29

Anisotropy

Holey structures

Polarization sensitive response

Resonance engineering, near-field accessability Broken symmetries

Resonance coupling, chiral effects

Influence of the Arrangement

Abbe Center JENA of Photonics

30

- Exploit coupling between nanoparticles
- Many degrees of freedom to tailor nanoparticle response

Chains

Dimers

Electric and magnetic field enhancement, mode hybridization

Permyakov *et al., Nano Lett.*15, 2137 (2015).

Directional scattering effects (Dielectric Yagi-Uda nanoantennas)

Krasnok *et al., Opt. Exp.* 20, 20599 (2012).

Oligomers

Fano resonances (narrow linewidths useful for sensing)

Chong *et al., Small* 10, 1985 (2014).

Isabelle Staude

Dielectric Metasurfaces

Abbe Center JENA of Photonics

31

Spatially homogeneous metasurface

Disordered metasurface

Goal: we want to work in a non-diffractive regime, where only the zeroth diffraction order is propagating.

For a square lattice, lattice constant b, the first diffraction order at normal incidence appears at $\lambda_D = n_m b$

Mie resonance at $\lambda_{\mathrm{Mie}} pprox 2n_p a = n_p d_p$ (in vacuum)

Condition: $\lambda_{\text{Mie}} > \lambda_{\text{D}} \rightarrow n_m b < n_p d_p$

 \rightarrow Another reason for high nanoparticle index!

be Center JENA

32

Mie-Resonant 3D Metamaterials?

Abbe Center JENA of Photonics

33

Rybin et al., Nat. Commun. 6 10102 (2015).

Outline

- Motivation
- Optical properties of high-index dielectric nanoparticles
- Dielectric Huygens' metasurfaces
- Highlight talk
 - Active control of dielectric metasurfaces
 - Light emission from dielectric metasurfaces

Abbe Center JENA Silicon Nanodisk Array of Photonics **Priedrich-Schiller-Universität** 35 experiment, x polarization experiment, y polarization simulation 0.8 Transmittance magnetic electric mode mode 0.2 0 1.4 1.49 1.52 1.43 1.46 1.55 Wavelength (µm) etic Mo Electric Mode 400 nm

I. Staude et al., ACS Nano 7, 7824 (2013).

Overlapping the ED and MD Resonances

Abbe Center JENA of Photonics

36

Huygens' Metasurfaces

Images adapted from R. Zia

- Huygens' principle: each point on a wave front acts as a secondary source of outgoing waves
- Huygens' source: source radiating the far-fields of a crossed electric and magnetic dipole

References

C. Huygens, Traité de la Lumiére, (1690).
A. E. H. Love, *Phil. Trans. R. Soc. Lond. A* 197, 1-45 (1901).

A. D. Yaghjian, European Conf. Antennas Propagat. (EuCap), 856-860 (2009).

F. Monticone, et al., Phys. Rev. Lett. **110**, 203903 (2013).

Theoretical Model

Understanding the full complex response of the nanodisk metasurface: Coupled electric and magnetic dipole model

Coupled-dipole equations:

$$\mathbf{p}_{l} = \alpha^{E} \left[\mathbf{E}_{l}^{0} + \frac{k_{0}^{2}}{\varepsilon_{0}} \sum_{j \neq l}^{N} \left(\hat{G}_{lj} \mathbf{p}_{j} + \frac{i}{ck_{0}} [\mathbf{g}_{lj} \times \mathbf{m}_{j}] \right) \right]$$
$$\mathbf{m}_{l} = \alpha^{M} \left[\mathbf{H}_{l}^{0} + k_{0}^{2} \sum_{j \neq l}^{N} \left(\varepsilon_{d} \hat{G}_{lj} \mathbf{m}_{j} - \frac{ic}{k_{0}} [\mathbf{g}_{lj} \times \mathbf{p}_{j}] \right) \right]$$

A. B. Evlyukhin et al., Phys. Rev. B 82, 045404 (2010).

Abbe Center JENA

39

Theoretical Model

- For lattice constants smaller than the wavelength of the incident light: capture influence of the array by defining effective electric and magnetic polarizabilities α_{eff}^{e} and α_{eff}^{m}
- Field transmittance coefficient of the metasurface

$$t = 1 + \frac{ik_d}{2A} (\alpha_{\text{eff}}^e + \alpha_{\text{eff}}^m); \qquad k_d = n_d \omega / c_0$$

• Assume Lorentzian line shapes for the dispersion of α_{eff}^{e} and α_{eff}^{m} :

$$\alpha_{\rm eff}^e = \frac{\alpha_0^e}{\omega_{e,0}^2 - \omega^2 - 2i\gamma_e\omega} ; \qquad \alpha_{\rm eff}^m = \frac{\alpha_0^m}{\omega_{m,0}^2 - \omega^2 - 2i\gamma_m\omega}$$

• Determine amplitudes of the effective polarizability:

$$T = \left| t(\omega_{e,m}) \right|^2 = 0 \quad \Rightarrow \quad \alpha_0^{e,m} = \frac{4Ac_0}{n_d} \gamma_{e,m}$$

• Field transmittance coefficient of the metasurface:

$$t = 1 + \frac{2i\gamma_e\omega}{\omega_{e,0}^2 - \omega^2 - 2i\gamma_e\omega} + \frac{2i\gamma_m\omega}{\omega_{m,0}^2 - \omega^2 - 2i\gamma_m\omega}$$

Evlyukhin et al., Phys. Rev. B 82, 045404 (2010), Decker et al., Adv. Opt. Mater. 3, 813 (2015).

Isabelle Staude

bbe Center JENA

40

Two Individual Dipole Resonances

Two Individual Dipole Resonances

Two Matching Dipole Resonances

E-field vectors at 1700 nm wavelength

Huygens' Metasurface Transmittance

Abbe Center JENA of Photonics

44

Metasurfaces and Mie-resonant nanophotonics

Imprinting Position Dependent Phase

Abbe Center JENA of Photonics

45

- Approximation of 0 2π azimuthal phase gradient by 4 quadrants with equidistant phase differences
- Experimental transmittance efficiency > 70%

Abbe Center JENA

Huygens' Metasurface Beam Shaper

Abbe Center JENA of Photonics

K. Chong, et al., Nano Lett. 15, 5369-5374 (2015). Isabelle Staude Metasurfaces and Mie-resonant nanophotonics

- Good agreement with theory
- Polarization insensitive

Huygens' Metasurface Beam Shaper

Abbe Center JENA of Photonics

48

Interferometric characterization of the generated beam

K. Chong, et al., Nano Lett. 15, 5369-5374 (2015).

Isabelle Staude

Huygens' Metasurface Hologram

Abbe Center JENA of Photonics

K. Chong, et al., ACS Photonics **3**, 514–519 (2016). Isabelle Staude Metasurfaces and Mie-resonant nanophotonics

Depth Imaging

Abbe Center JENA of Photonics

C. Jin et al., Adv. Photonics 1, 6001 (2019).

Different Phase-Control Approaches

Abbe Center JENA of Photonics

Potential of Resonant Metasurfaces

Abbe Center JENA of Photonics ledrich-Schiller-Universität

52

- Strong spatial and spectral dispersion
 - Opportunity to tailor frequency / angular sensitive optical response
 - Facilitates tuning/switching
- Resonantly enhanced electromagnetic near-fields
 → enhancement of light-matter interactions
 - Nonlinear optical effects
 - Spontaneous emission

Abbe Center
of PhotonicsJENA
JENA
Friedrich-Schiller-UniversitätInstitute of
photonics
DescriptionInstitute of
photonics
DescriptionFriedrich-Schiller-UniversitätJENA
DescriptionImage: Comparison of the photonic of the phot

Highlight: Nonlinear, tunable and lightemitting dielectric metasurfaces

Isabelle Staude

Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743 Jena, Germany

Outline

- Motivation
- Optical properties of high-index dielectric nanoparticles
- Dielectric Huygens' metasurfaces
- Highlight talk
 - Active control of dielectric metasurfaces
 - Light emission from dielectric metasurfaces

Abbe Center JENA

hotonics

Tuning of Metasurfaces

Tuning approaches:

- Change the metasurface geometry
- Change the embedding material properties
- Change the nanoresonator material properties

Tuning performance:

- Resonance shift $\Delta \lambda$
- Relative resonance shifts $\Delta\lambda/\lambda_0$ or $\Delta\lambda/FWHM$
- Absolute changes in transmittance/reflectance $(\Delta T, \Delta R)$
- Relative changes in transmittance/reflectance $(\Delta T/T, \Delta R/R)$

bbe Center | IENA

Active Tuning of Dielectric Metasurfaces

Abbe Center JENA of Photonics

Mechanical tuning

Optomechanical tuning

Karvounis et al., Appl. Phys. Lett. **107**, 191110 (2015).

Temperature tuning

Rahmani *et al., Adv. Funct. Mater.* **27**, 1700580 (2017).

Gutruf et al., ACS Nano 10, 133 (2016).

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces

Amsterdam, 21.06.2019

Tunable Dielectric Metasurface Devices

Tunable metalenses

E. Arbabi *et al., Nat. Commun.* **9**, 812, (2018).

A. She et al., Sci. Adv. 4, eaap9957 (2018).

Tunable beam deflectors

A. Komar et al., ACS Photon. 5, 1742 (2018).

Li *et al.*, arXiv:1901.07742 (2019). Amsterdam, 21.06.2019

Isabelle Staude

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces

Liquid Crystal Dynamic Control

Abbe Center JENA of Photonics

LC Cell Design & Assembly

Abbe Center JENA of Photonics

Alignment direction defined by illumination of AtA-2 with polarized light (450 ~455 nm)

J. Appl. Spectrosc. 83 (1), 115-120, 2016; A. Muravsky, Next generation of Photoalignment, VDM Verlag, 2009 Observation through two parallel polarizers

One surface coated

Both surfaces coated

C. Zou et al., ACS Photonics 6, 1533 (2019).

Measured Tuning Performance

Abbe Center JENA of Photonics

C. Zou et al., ACS Photonics 6, 1533 (2019).

Numerical Simulations

Abbe Center JENA of Photonics

C. Zou et al., ACS Photonics 6, 1533 (2019).

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces

Comparison with Experiment

Abbe Center JENA of Photonics

Transmittance

0

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces

A Tunable Metasurface Display

Abbe Center JENA of Photonics

63

Images taken at 670 nm; E_{inc} // LC alignment.

Electrically tunable dielectric metasurface display with ~51% modulation depth in the visible

C. Zou et al., ACS Photonics **6**, 1533 (2019).

Ultrafast All-Optical Switching in GaAs MS

The Road Ahead

Abbe Center JENA of Photonics

- Combine tuning, switching and nonlinear response with spatial phase control
 - → nonlinear and (ultrafast) dynamic wavefront control

Tuning the Huygens' Regime in the NIR

Abbe Center JENA of Photonics

66

Polarization || LC alignment direction

Hologram intensity ratio: $I_{off}/I_{on} = 8.6$.

C. Zou et al., in preparation (2019).

Outline

- Motivation
- Optical properties of high-index dielectric nanoparticles
- Dielectric Huygens' metasurfaces
- Highlight talk
 - Active control of dielectric metasurfaces
 - Light emission from dielectric metasurfaces

Abbe Center JENA

hotonics

Light-Emitting Metasurfaces

Abbe Center JENA of Photonics

68

Consider the metasurface an array of resonant dielectric nanoantennas driven by localized sources

Measured fluorescence count rate from a metasurface with a single emitter placed at the position r_{em} on it:

A. Vaskin, **R. Kolkowski, A. F. Koendrink,** and I. Staude, *Nanophotonics*, accepted (2019).

(Dielectric) Light-Emitting Metasurfaces

- Antenna effect from individual meta-atoms: emission enhancement, spectral and directional emission tailoring
 - Dielectric building blocks: moderate Purcell, high radiation efficiency
- Effect of the array/arrangement
- Shaping emission patterns: form factor, structure/array factor, momentum distribution of the source, previously studied in plasmonic metasurfaces (see example)
 PL Intensity

Zambrana-Puyalto *et al., PRB.* **91,** 195422 (2015).

Lozano et al., Nanoscale 6, 9223 (2014).

bbe Center JENA

Far-Field Emission Calculations

- Popular methods: finite array simulations, inverse Floquet transformation
- Numerical calculation based on reciprocity principle:
 - Calculate angle-averaged (electric or magnetic) near-field enhancement inside active volume using e.g. the finite element method
 - Employ reciprocity principle $p_2 \cdot E_1(r_2) = p_1 \cdot E_2(r_1)$

Integration Strategies for Emitters

Abbe Center JENA of Photonics 72

A. Vaskin, R. Kolkowski, A. F. Koendrink, and I. Staude, *Nanophotonics*, accepted (2019).

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces
Light Emission from Dielectric Metasurfaces

Abbe Center JENA of Photonics Friedrich-Schiller-Universität

I. Staude *et al., ACS Photonics* 2, 172 (2015),
A. Vaskin *et al., ACS Photonics* 5, 1359 (2018).

Emission enhancement

Lasing

S. T. Ha *et al., Nat. Nanotech.* **13**, 1042 (2018). Amsterdam, 21.06.2019

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces

2 Examples of Light-Emitting MS

Monolithic III-V semiconductor metasurfaces incorporating QDs

S. Liu *et al., Nano Lett.* **18**, 6906–6914 (2018).

Abbe Center JENA

Integration of QDs into Metasurfaces

S. Liu et al., Nano Lett. 18, 6906–6914 (2018).

Abbe Center JENA

75

of Photonics Friedrich-Schiller-Universität

The Role of Symmetry for Emission

Abbe Center JENA of Photonics

S. Liu et al., Nano Lett. 18, 6906–6914 (2018).

Asymmetric MS: PL Spectra

Abbe Center JENA of Photonics

77

S. Liu et al., Nano Lett. 18, 6906–6914 (2018).

Asymmetric MS: Emission Pattern

Abbe Center JENA of Photonics

NA = 0.65

S. Liu *et al., Nano Lett.* **18**, 6906–6914 (2018).

2 Examples of Light-Emitting MS

Abbe Center JENA of Photonics

Silicon metasurfaces hybridized with twodimensional semiconductors

T. Bucher *et al., ACS Photonics* **6**, 1002-1009 (2019).

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces

Amsterdam, 21.06.2019

Fabrication of Hybrid Structures

Abbe Center JENA of Photonics 80

MoS₂ monolayers asgrown by CVD

T. Bucher et al., ACS Photonics 6, 1002-1009 (2019).

Fabricated Hybrid Structures

Abbe Center JENA of Photonics

Fabrication of a series of metasurfaces with a variation of the nanocylinder diameter D

T. Bucher et al., ACS Photonics 6, 1002-1009 (2019).

Photoluminescence of Hybrid Structures

T. Bucher et al., ACS Photonics 6, 1002-1009 (2019).

 Confocal PL microscopy (NA 0.65), reflection configuration

Abbe Center JENA

87

- 532nm pulsed laser excitation
- Effect of the metasurface:
 - PL enhancement by a factor of 5-8
 - Spectral broadening
 - Blue shift of the emission maximum
- But: no strong dependence on diameter → negligible photonic effect

Back-Focal Plane Imaging of Emission

 $\begin{array}{c} P_{y}/k_{0} \\ P_{z}=240 \text{ im} \\ 0.73$

 Coupling to metasurface induces a reshaping of the emission pattern

bbe Center JENA

- The more resonant the structure, the more directional the emission becomes
- Tailoring 2D-TMDC emission properties by engineering the combined photonic, electronic and topographic environment
- Care must be taken when interpreting PL enhancement effects

T. Bucher et al., ACS Photonics 6, 1002-1009 (2019).

The Road Ahead

Abbe Center JENA of Photonics

- Enhance complexity of spatial emission patterns
- Dynamic control of the emission pattern
- Explore different implementations
- Electrical driving schemes?
- Exploit valley-dependent directional coupling

Image: A. Vaskin, R. Kolkowski, A. F. Koendrink, and I. Staude, Nanophotonics, accepted (2019).

Recent Review Articles

Abbe Center JENA of Photonics

nature

photonics

Journal of Physics D: Applied Physics

UNCORRECTED PROOF

A Carl 10 (2016) 102001 (21cm)

AN 10 118 204-875 18 10 1284

Topical Review

Resonant dielectric nanostructures: a lowloss platform for functional nanophotonics

Manuel Decker' and Isabelle Staude'

¹Nandinuar Physics Comer, Bounch School of Physics and Engineering, Anemalan National University, Cambras, 2001 ACT Assessing ³Institute of Applied Physics, Abbe Comer of Photonian, Hindrich-Schlär University Res, 97743 Iona, Germany

E-mail induction and the internal of

Received 11 August 2015, novied 3 June 2018 Accepted for publication 21 June 2018 Published 8 September 2016

Abstract This arcives exerviews the state of the art of research into high-index delectric nanoresimators and their use in functional photonic summarizatures at optical frequencies. We start by providing the motivations for this metacult area and by partiag 4 into context with the more well-

Review

Aleksandr Vaskin, Radoslaw Kolkowski, A. Femius Koenderink, and Isabelle Staude*

Light-emitting metasurfaces

M. Decker and I. Staude, J. Opt. **18**, 103001 (2016).

I. Staude und J. Schilling, Nature Photon. 11, 274–284 (2017).

A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, "Light-Emitting Metasurfaces", *Nanophotonics*, accepted (2019).

releva

off-re

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, "Resonant Dielectric Metasurfaces – Active Tuning and Nonlinear Effects", J. Phys. D: Appl. Phys. accepted (2019).

Metamaterial-inspired silicon nanophotonics

Isabelle Staude¹ and Jörg Schilling^{2*}

REVIEW ARTICLE

ED ONLINE 28 APRIL 2017 | DOI: 10.1038/NPHOTON.2017.01

The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological

Topical Review

J. Phys. D. Appl. Phys. 66 (2018) 000000 (25)(6)

10P Publishing

Resonant dielectric metasurfaces: active tuning and nonlinear effects

Chengjun Zou, Jürgen Sautter, Frank Setzpfandt and Isabelle Staude®

Institute of Applied Physics, Albe Center of Photonics, Friedrich Schiller University Jena, Germany

Current Team & Funding

Abbe Center JENA of Photonics

Rajeshkumar Chengjun Mupparapu Zou

Aleksandr Vaskin

Tobias Jürgen Bucher Sautter

Denizhan Sirmaci

Wenjia Zhou

Katsuya Tanaka

Cristina

Amaya

Deutsche Forschungsgemeinschaft DFG TAILORED DISORDER Emmy Noether-Programm Deutsche Forschungsgemeinschaft DFG Abbe Center JENA of Photonics Thank you Friedrich-Schiller-Universität for your Bundesministerium attention! für Bildung und Forschung Die Junge Akademie DAAD

Isabelle Staude

Highlight: Nonlinear, tunable and light-emitting dielectric metasurfaces