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Question 1: Far-field and near-field microscopy

Note: In addition to the class slides, the review article Trends and developments in scanning near
field optical microscopy by V. Sandoghdar (in particular sections 2-3) can be of useful for this
assignment.

Goal: To simulate and compare the image formation of a nanoscale object by an aberration-free
conventional microscope and by a scanning near-field aperture.

Instructions: The electric field distribution in the object plane at (z = 0) is contained in object2018.dat,
that can be downloaded from

https://amolf.nl/research-groups/resonant-nanophotonics/uva-mastercourse

It is a 400 × 400 pixel matrix that represents the field in a 8000 × 8000 nm area. The maximum
intensity is 1, the minimum 0. The wavelength of illumination is 600 nm. You may use the Math-
ematica notebook provided, which contains some of the necessary functions. In your report, please
describe how you calculate each part of the exercise.

TheN×N matrix of the image contains elements apq that describe the field at and x = (p−1)∆x and
y = (q − 1)∆y. ∆x and ∆y are 8µm/400 px = 20 nm. We can perform a discrete two-dimensional
Fourier transform of this matrix to obtain the angular spectrum representation.
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In the lecture, we saw that an analytical Fourier transform of the electric field is given by:
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−∞
E(x, y, z) exp [ikxx+ ikyy] dxdy (2)

1a: What is the relation between u and v and the quantities kx and ky?

1b: Calculate and plot the angular spectrum representation of the field in the plane of the object.
Explain what you see in this image.

1c: Evanescent waves will not be collected by an objective. We will explore what this means for
the image. As discussed in the lecture, high-k waves will become evanescent. Explain why this is.
Simulate the intensity distribution in an image plane that is formed by an aberration-free lens sys-
tem that collects all propagating anagles (i.e., a microscope objective with NA = 1). Plot this
image. Explain what you see and how this is caused.

1d: A way to get around the diffraction limit is by using a scanning probe, for which an aperture is
used. It consists of a circular hole with a diameter of 80 nm mounted in a square tip also with sides
of 80 nm. The aperture is scanned at a constant height of z = 0 nm. Simulate the image formed
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when the aperture scans over the sample in steps of 20 nm. The amount of light scattered by the
aperture only depends on the intensity under the aperture. Compare with your answers to 1c, and
explain the result.

Question 2: A gong in front of a mirror

In the lecture we have seen how an electric dipole’s radiation pattern is described when this electric
dipole is placed in front of a mirror. In this exercise, we are going to see what happens when a gong,
an acoustic dipole, is placed in front of a concrete wall.

When a gong is placed in front of a wall, two things should be considered: Firstly, while electric
fields have a node at a mirror/wall, acoustic waves have an antinode. This results in opposite signs
in their mirror images, as shown in the figure below. Secondly, the radiation pattern S(θ, ϕ) is
different for an acoustic dipole compared to an electric dipole.

2a: For now, we will limit ourselves to dipoles perpendicular to the interface. What happens to the
radiated power of the acoustic dipole for limd→0? And for the electric dipole?

2b: In the presence of a wall the field at an observation point R with R ≫ λ reads:

U(R) ≈ eikR

R
S(θ, ϕ)

[
eikd cos θ + q e−ikd cos θ

]
(3)

where S(θ, ϕ) is the radiation pattern of an acoustic dipole and q represents the strength and sign
of the mirror-image gong.
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The amplitude of an acoustic pressure wave goes as

U(R) = S(θ, ϕ)
eikr

r
, (4)

where k = 2π/λ, r is the distance to the observer, and S(θ, ϕ) is the radiation pattern of the dipole.
Derive Eq. 3 for an acoustic dipole at a distance d from a wall. First, show that rd ≈ R(1− d

R cos θ)
is valid at large distances from the wall, R ≫ d. Hint: Taylor expand rd, and use that the system
is spherically symmetric around ẑ. Refer to the figure below for the geometry.

The radiated flux of a dipole scales with |U(R)|2. For acoustic dipoles, the radiation pattern is
shaped as A cos θ.

2c: Write down and simplify the integral for the radiated flux by the acoustic dipole as far as pos-
sible. You can use standard Bessel function integrals or Mathematica for the integral itself. Hints:
Do you need to integrate over a full sphere?

Do the same for an electric dipole. These also follow Eqn. 3, but the radiation pattern S(θ, ϕ) for
electric dipoles is shaped as B sin θ.

Plot the radiated power as a function of d/λ, normalized to the radiated power of an acoustic/electric
dipole in free space. Compare and explain the behaviour of the acoustic and electric dipoles.

2d: Your result for the change in emitted power of a classical point dipole is equivalent to the
change of the spontaneous emission decay rate of a quantum dipole. It tells you that depending
on the geometry, an atom can decay faster or slower due to constructive or destructive interference
with its own mirror image. This is called the local density of optical states (LDOS). Consider the
diagram you drew in the previous question. Do you expect the LDOS of the horizontally oriented
dipole to be enhanced or reduced for limd→0? Explain why. What happens at large distances d?
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