Living matter possesses fascinating material properties. Cells and tissues comprise viscoelastic materials with a resemblance to man-made soft materials such as polymer gels. However, they are unique in their ability to actively generate forces and change shape. We aim to understand the physical mechanisms that underlie this striking active mechanical behavior.

We approach this challenge by combining concepts and techniques from soft matter physics, biophysics, synthetic biology, and mechanobiology. We develop advanced measurement techniques that combine quantitative imaging with force measurements across length scales ranging from the cell/tissue level down to molecular scales. This includes rheology combined with imaging or small angle X-ray scattering, optical tweezer force spectroscopy, micropipette aspiration, and optical microrheology.

Our work is highly interdisciplinary, contributing a physics component to cell biology and regenerative medicine, and a biological perspective on materials design.

We have two main research lines:

  • Bottom-up synthetic cells to understand cytoskeletal functions:
    We investigate cell mechanics by reconstructing synthetic cells from a minimal set of cytoskeletal proteins enveloped in a lipid membrane. Synthetic cells allow us to perform quantitative measurements that can reveal the molecular basis of force transmission, generation and sensing in cells. Read more…
  • Mechanobiology of cell-matrix interactions:
    We investigate cell-extracellular matrix interactions by reconstructing synthetic tissues comprised of cells embedded within an extracellular matrix composed of key tissue components such as collagen. We measure the mechanical properties of these tissue constructs across scales from macro to molecular, in order to understand how cells sense and respond to their extracellular environment. Read more…
  • Under our skin: how hyaluronan regulates the stiffness of tissue

    Read more

  • Onderhuids: hoe hyaluronzuur de stijfheid van weefsels reguleert

    Onze huid is meestal zacht, maar kan als het nodig is ook stijf zijn. Ook andere weefsels, zoals spierweefsel en kraakbeen kunnen hun stijfheid veranderen op een manier die past …

    Read more

  • Vici-beurs voor Gijsje Koenderink

    AMOLF-groepsleider Gijsje Koenderink ontvangt van NWO een Vici-beurs van 1,5 miljoen euro voor haar onderzoek naar de wijze waarop levende cellen omgaan met mechanische stress. Vici is een van de …

    Read more

  • Vici-grant for Gijsje Koenderink

    Read more

Read more news articles

Group Members